

Ashok Parchuri | MSc Advanced Networking | 2008

TCP/IP Malicious
Packet Detection

(SQL Injection Detection)

Submitted in Partial Fulfilment of the Requirements of Napier University for the

degree of Master of Science in Advanced Networking

Submitted By:

Ashok Parchuri

06008115

MSc Advanced Networking

Ashok Parchuri | MSc Advanced Networking | 2008

2

Authorship declaration

I, Ashok Parchuri, confirm that this dissertation and the work presented in it are my

own achievement.

Where I have consulted the published work of others this is always clearly attributed;

Where I have quoted from the work of others the source is always given. With the

exception of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I have

contributed myself;

I have read and understand the penalties associated with Academic Misconduct.

I also confirm that I have obtained informed consent from all people I have involved

in the work in this dissertation following the School's ethical guidelines

Signed: Ashok Parchuri

Date: 26
th

 September 2008

Matriculation no: 06008115

Ashok Parchuri | MSc Advanced Networking | 2008

3

Data Protection declaration

Under the 1998 Data Protection Act we cannot disclose your grade to an unauthorized

person. However, other students benefit from studying dissertations that have their

grades attached.

Please sign your name against one of the options below to state your preference.

 The University may make this dissertation, with indicative

grade, available to others.

Ashok Parchuri The University may make this dissertation available to others,

but the grade may not be disclosed.

 The University may not make this dissertation available to

others.

Ashok Parchuri | MSc Advanced Networking | 2008

4

Abstract

With rapid improvements in the data transfer speeds in the last two decades the

Internet has become a major opportunity to enterprises to advertise themselves and to

maintain their data safely in servers to make it more accessible. With the

improvement in Internet technologies, malicious activities are threat for enterprises to

maintain integrity of their data.

The purpose of this thesis is to capture the data flowing in a network, and to analyze it

to find malicious packets carrying SQL injection attacks. It aims to detect these

attacks as the attacker can compromise a server simply using the web browser and for

it can cause severe damage such as losing data from a database or even changing the

values. The literature review section shows that previous methods of detection have

used anomaly detection, where as this thesis uses a novel metric-based system, which

measures the threat level of a URL.

In creating a prototype of the system, an application was created to detect malicious

packets using the C# language with Microsoft Visual Studio 2005. WinPcap is used

for capturing the network packets that are flowing through the network interface in

promiscuous mode. This application was developed based on the idea of capturing the

packets and comparing them for the malicious keywords that are used for SQL

injection attacks. The keywords, such as SELECT, DELETE, OR, and FROM are

assigned with a malicious metric value, along with possible threats in the URL from

certain characters, such as „=‟ and a single quote character. When the resulting

summation value reaches more than a given threshold, the application alerts the user

that it found an injection attack. The thesis presents different weights for these threat

elements, and produces an overall threat level.

Several tests have been conducted for analyzing the threshold value. These have been

are conducted using over 1,000 URL strings that have been captured from normal

traffic, and some have been injected with malicious keywords. It has been found that

the application successful captures all the malicious strings, but it also resulted in

false positives for strings that are not malicious. For a run of 1,000 URLs, it detected

10 true-positives, and 30 false-positives.

It concludes with a critique of the application is made, along with suggesting the

future improvements that can make the application to improve performance. For

future work, the thesis presents methods that could improve the metric system.

Ashok Parchuri | MSc Advanced Networking | 2008

5

Contents

Authorship declaration .. 2

Data Protection declaration ... 3

Abstract ... 4

Contents .. 5

List of Figures: .. 8

List of Tables: ... 9

Acknowledgements ... 10

1 Introduction ... 11

1.1 Context ... 11

1.2 Aim ... 11

1.3 Background .. 12

1.4 Thesis layout .. 12

2 Background ... 14

2.1 Introduction .. 14

2.2 TCP/IP .. 14

2.2.1 TCP Segment Format .. 14

2.2.2 IP Datagram .. 15

2.3 HTTP Protocol ... 16

2.3.1 HTTP Message Formats ... 17

2.3.2 HTTP Methods.. 17

2.3.3 HTTP Response codes: ... 18

2.4 Databases .. 19

2.5 Structured Query Language (SQL) .. 20

2.5.1 Data Manipulation Language .. 20

2.5.2 Data Definition language .. 21

2.5.3 Creating Databases.. 21

2.5.4 Operators and characters in SQL .. 22

Ashok Parchuri | MSc Advanced Networking | 2008

6

2.6 Database Administration .. 23

2.7 WinPcap ... 23

2.8 Conclusions .. 24

3 Design ... 25

3.1 Introduction .. 25

3.2 Outline of SQL injection .. 25

3.3 Recent Examples of SQL Injection attacks .. 26

3.4 Web Application Processing .. 26

3.5 SQL Injection Types .. 28

3.5.1 SQL Manipulation .. 28

3.5.2 Code Injection ... 29

3.5.3 Function Call Injection ... 29

3.5.4 Buffer overflow ... 30

3.6 Existing Technologies to stop SQL Injection .. 31

3.6.1 Defensive Programming ... 31

3.6.2 Anomaly Detection ... 31

3.7 Simple SQL Injection Attack by Example ... 31

3.8 Conclusion .. 36

4 Implementation ... 37

4.1 Introduction .. 37

4.2 Design Considerations.. 37

4.3 IDS Design ... 38

4.3.1 Design Pre-requisites .. 38

4.3.2 SQL Keywords.. 39

4.4 Programming .. 41

4.4.1 Getting Network device List: .. 41

4.4.2 On Packet Arrival ... 41

4.4.3 Capture the URL String .. 43

4.4.4 Comparing The URL string words ... 43

Ashok Parchuri | MSc Advanced Networking | 2008

7

4.4.5 The application location .. 43

4.5 Conclusions .. 44

5 Evaluation ... 45

5.1 Introduction .. 45

5.2 Application Evaluation:.. 45

5.2.1 Example1 .. 45

5.2.2 Example 2 ... 47

5.3 Alerts .. 48

5.4 Conclusions .. 48

6 Conclusion .. 50

6.1 Critical Analysis ... 50

6.2 Future Work ... 50

6.3 Final Words .. 51

7 References ... 52

8 Appendix ... 54

8.1 Program for Capturing SQL Injection attacks.. 54

8.2 Output Screens .. 56

Ashok Parchuri | MSc Advanced Networking | 2008

8

List of Figures:

Figure 2.1: TCP Segment Format .. 15

Figure 2.2: IP Packet Format ... 16

Figure 2.3: Request and Response Chain .. 16

Figure 2.4: Sample Request and Response Communication 19

Figure 2.5: Sample HTTP Request Headers. ... 19

Figure 2.6. Select statement output. ... 22

Figure 3.1. Web application processing. .. 28

Figure 3.2. Sql Database Table Sample ... 28

Figure 3.3. SQL database Table. .. 32

Figure 3.4. Sample Login application .. 32

Figure 3.5. Sample login application result. .. 33

Figure 3.6. SQL injection In Login application. .. 34

Figure 3.7. Login application result by injection attack. ... 34

Figure 3.8. SQL injection attack Example. .. 35

Figure 3.9. SQL injection Attack example 2. .. 35

Figure 3.10. Error produced by login Application ... 36

Figure 5.1. Evaluation1 Analysis values.. 46

Figure 5.2. Evaluation2 Analysis values.. 47

Figure 5.3. Alert screen .. 48

Figure 8.1. Output when No Injection attack is detected. .. 56

Figure 8.2 Output of application when attack detected. .. 56

Figure 8.3. Sample Log file Output. .. 57

Ashok Parchuri | MSc Advanced Networking | 2008

9

List of Tables:

Table 2.1. HTTP Methods ... 18

Table 2.2: HTTP Error Codes .. 18

Table 2.3. SQL Data Manipulation language Statements .. 20

Table 2.4. SQL Data Definition Language Statements ... 21

Table 2.5. SQL Logical Operators ... 23

Table 4.1. SQL injection attack Keywords. ... 39

Ashok Parchuri | MSc Advanced Networking | 2008

10

Acknowledgements

Firstly, I would like to thank Professor William Buchanan, for his guidance and

support throughout this project. In addition, I would like to thank Mr. Jim Jackson for

being part of the marking process.

I would like to thank my father, mother, brother and everyone in my family for their

extensive support all these time by all means needed.

I would like to extend my Gratitude to my late uncle Dr. Ravindra Parchuri for his

support and encouragement.

Ashok Parchuri | MSc Advanced Networking | 2008

11

1 Introduction

1.1 Context
Many organisations invest large amounts of money to secure the data of their

consumers. If the organization loses its customers data like a credit card number or

the identity details, it is likely the organization to lose its customers, such as with

TkMaxx (IT ProA, 2008). Thus, it is important for organizations to take care about

the data of the customers and to maintain the company profile properly. Normally

organizations store their customers and employees profile in databases it is important

for the organization to protect the database from all the possible attacks.

With an SQL injection, attack the intruder can construct a malicious URL, which

contains SQL keywords to attack the database. This is typically caused when the

middleware has not properly checked the incoming URL. SQL injection is thus one a

type of attack that the administrator cannot identify easily, until the administrator

receives mail from the consumers saying that their credit card details are in non-

legitimate hands because of the poor database structure of the organization. This is a

growing problem, as in the first six months of 2008 IT Pro highlighted a massive

increase in SQL injection attacks. They highlight that Microsoft was responsible for a

large-scale attack on 500,000 web servers which involved an SQL injection attack.

Other attacks in 2008 have included the NHS and the UN. Tools such as RealPlayer

have also been used as an agent of these attacks. A highlight figure is that one page is

compromised every five seconds on the Internet (IT ProB, 2008).

Autoweb.co.uk a U.K based advertising and marketing website is attacked by SQL

injection in May 2008. The attack has done by injecting a 30 characters to overwrite

the comments, by that the attacker able to gain access over the Microsoft SQL

database. (Network World, 2008).

Databases stores important information related to the organization like consumer

credit card numbers, usernames and passwords of the employees and consumers, and

it is important for the company to protect the database. If the database is attacked all

the information in the database can be lost and this results a big loss to the

organization and its customers also. It is thus important to protect the data that is

stored in the databases in the coming sections we evaluate how the databases work

and how an intruder can attack these databases and the type of the attacks that a

hacker can do on the databases, by evaluating these strategies this thesis thus produces

a solution to reduce these attacks on the databases.

“Whatever can go wrong Will Go wrong and at the worst possible time in the

Worst possible way.” (Murphy’s Law)

1.2 Aim
The aim of this project is to detect SQL injection attacks that an intruder is trying to

do on the database when the code is running as a part of application executing. It

includes a number of objectives:

Ashok Parchuri | MSc Advanced Networking | 2008

12

Review the database structure.

Review the types of attacks that can be done on the databases.

Review how the SQL injection attacks can be done practically.

Develop an application that can detect the SQL injection attacks.

Perform an evaluation of the application.

Propose future developments that can be implemented in the application.

1.3 Background
The Internet became an integral part of human life and many enterprises dependent on

it in different ways like storing employee profiles, accessing the files on remote

servers and maintaining user information, and so on. The Internet is also an

inexpensive solution for the enterprises to maintain a wide area network, and

individual use the Internet for many other uses like shopping, meeting friends, reading

news, and so on. Due to the rapid developments in Internet transfer speeds and the

flexibility depending on the web applications is improved a lot. Because of the

extensive use of internet in day-to-day life it became easier for hackers to attack on

personal computers and to theft identity information like credit cards and personnel

files.

The enterprises can protect their employees by taking high security measures like one-

time passwords and unique identification numbers. However, for a normal consumer

it is more likely to lose their personal information due to the attacks on internet.

Due to the pressure on the employees who are developing the application, they try to

deliver the application quickly more than considering about all the security measures

that need to consider when developing the application. This leads the program to be

vulnerable to internet attacks.

One type of the attack need to be considered when developing is SQL injection by

which the hacker can attack the background database application and get the credit

card details of a customer to use it for unauthorized transactions. The SQL injection

attacks are done on the internet applications more than the intranet applications.

Normally the administrator would not able to recognize that there is an attack

happened on the database, because of the fact that the hacker can execute the SQL

command as normal user. As the SQL injection, attack is executed as normal script

that is executed by the application it is highly difficult for the administrator that there

is an attack is running on the background.

1.4 Thesis layout
Chapter 1 Introduction. This chapter outlines the background technologies,

defining the aim and objectives.

Chapter 2 Background. This chapter provides information about background

technologies that are used in the thesis. This also explains about how

the database structures and how the database tables are constructed.

Chapter 3 Design. Proposes the frame work that is required to design the

application. Discusses about the technologies that are involved and

Ashok Parchuri | MSc Advanced Networking | 2008

13

how the injection attacks can be performed on the database by

examples.

Chapter 4 Implementation. Explains about how the application is implemented

depending the framework that is described in chapter 3. Code snippets

are included in this chapter to explain the application structure.

Chapter 5 Evaluation. The implemented application results are analyzed to

calculate the values that are required for functioning of the application.

Chapter 6 Conclusion. The chapter summarizes the work that is performed in the

thesis. Also provides a critical analysis on the application. Future work

and developments that can be performed on this application are

explained on this chapter.

Chapter 7 References. Documentation of resources that are used as a part of

application development.

Chapter 8 Appendix. Includes the coding of all the application that is used,

screenshots of the application is included.

Ashok Parchuri | MSc Advanced Networking | 2008

14

2 Background

2.1 Introduction
This chapter discusses and outlines the theory that is required to understand the

application. The application uses technologies like SQL Server, C# programming. To

understand this application theory all the basic requirements are explained in this

chapter. It begins with examining the core components of the TCP/IP protocol, Http

message formats and the communication between a server and an end user. The

theory discusses about the SQL language, which is used for the database

programming. This chapter also provides a brief explanation about the database

administration and the WinPcap application, which is used for capturing the network

traffic.

2.2 TCP/IP
Transmission Control Protocol/Internet Protocol is a protocol, which is widely used in

day-to-day internet communication. This Protocol is known as TCP Segment and IP

datagram. TCP is a protocol, which is for reliable, connection-oriented, acknowledged

data communication. TCP protocol is a byte stream protocol. The data flowing

between the hosts is called as TCP segment. This protocol ensures reliable data

communication between two nodes depending on proper sequence numbers.

The protocol ensures to give a reliable data communication by using Positive

Acknowledgement with Retransmission (PAR) technology. PAR is a technology that

resends the data when it does not hear an acknowledgement from the destination.

When it says a connection-oriented Protocol it means the two peers using the TCP

application should have a connection when transferring the data.

A process called “handshake” is performed in the process of connection orientation.

Three way handshakes is a process when node a wants to communicate with node B,

then it first sends a SYN (Synchronization) segment with its IP address. When the

SYN segment arrives, at node B it replies with SYN+ACK segment, which sends the

IP address of the Port B. When the SYN+ACK segment arrives at the node A, it

establishes the connection and then sends the ACK segment with the data it wants to

transfer to node B. This process is called as three-way handshake.

2.2.1 TCP Segment Format

Figure 2.1 specifies the segment format of the TCP, which makes for reliable

communication between two nodes. It specifies the Source and Destination Port

address, the sequence number, and the acknowledgement number. By using these

fields, the protocol can provide reliable communication between the two nodes. The

initial sequence number is the number that says the position of the data segment and it

specifies the acknowledgement number that is expected by the sender of the segment.

Offset specifies the number of 32-bit word in TCP header. Reserved is a 6-Bit field

that is reserved for future use. Control bits are the field that is used for controlling the

connection between the two ports. When the control bit is set to URG, the urgent

pointer field has to be supplied. Window is the field that specifies the number of

octets. Checksum is the control field that covers the header and data fields. Urgent

Ashok Parchuri | MSc Advanced Networking | 2008

15

pointer is the sequence number of the octet following urgent data. Options are

available for Different type of functions. Octets are appended to the header that ends

on 32-bit word boundary and the next field is the data field once the TCP segment is

passed to another node it validates the entire above field and then the application

validates data.

Figure 2.1: TCP Segment Format

2.2.2 IP Datagram

IP Datagram is the protocol, used to communicate between two peers over the

internet. A TCP protocol can do a successful transmission between two peers when

they are directly connected. The IP Datagram helps a TCP segment to flow between

two computers in the network, by validating the source IP address and the destination

IP address.

The IP datagram forwards the packet directly to the host by validating the destination

address. When it cannot identify the destination address, it forwards the packet to a

gateway, which then forwards the packet to destination. It can do the reliable delivery

by importing the transmission protocols like Transmission Control Protocol and User

Datagram Protocol. By importing any of these protocols, the IP datagram can make a

reliable communication over the network.

Version is the field, which tells about the version of the IP frame (IPv4, IPv6).IHL is

the IP header length that can be used to extend the IP datagram. Type of service is the

field that can be used to indicate what type of service the IP datagram is expecting.

Total length indicates the length of length of datagram in octets up to 65,535.

Identification field used to resemble the fragmented packets. Flag is the field, which

tells about the fragmentation of the packet. If the flag field is set to one, it means it is

having more fragments when it is set to zero it is the last fragment. Fragmented offset

indicates the position in the datagram when the packet is fragments. Time to live is

the field, which tells about the maximum time the IP packet can remain in the

network. If the TTL field is zero the packet is destroyed. The TTL value is reduced

when it is passing from one HOP to another. The protocol specifies the type of

protocol that is used in the data portion such as TCP, UDP. Header checksum is the

field that is mainly for the header, when the header is modified the header checksum

value must be calculated again. Source address and Destination address are the fields,

which tell about the IP address of the source machine and the destination. Options are

the field that contains more options. Padding is the field that is filled with zero‟s to

make the size of header as a 32 bit multiple.

The TCP segment depends on the IP datagram to make a successful communication

over the network. While the IP datagram ensures the packets to reach the destination,

Ashok Parchuri | MSc Advanced Networking | 2008

16

the TCP segment ensures reliable transmission. TCP is used between peer-to-peer

communications where the data must be delivered. When the data is not delivered, the

source retransmits the packets, as it was not able to receive the acknowledgement

from the destination. When the delivery is not important factor to consider the data is

sent to the receiver or not (In broadcasting) UDP protocol can be used. The IP packet

format is represented in figure 2.2.

Figure 2.2: IP Packet Format

2.3 HTTP Protocol
Hypertext Transmission Protocol is the commonly used protocol in day-to-day

internet communications. HTTP protocol works in the application layer and can be

used for hypermedia information systems. HTTP protocol is in use from 1990 for data

transfer between the server and the client. HTTP communication is done in a form of

MIME like messages and the protocol communication is done by using the TCP/IP

protocol. The default port for HTTP communication is port 80. However, the

communication is not limited to only this port. According to the requirements, the

HTTP protocol can use other ports for communication.

HTTP 1.1 is the current version of protocol, which uses same port for many

request/response exchanges. The older version of HTTP protocol (HTTP 1.0) uses

different ports for each request/response exchanges. The communication in HTTP

protocol is done in form of request/response messages. Request is the message where

a client requests for some information from the server and the server responds to the

message in response format. Figure 2.3. Represents simple request and response chain

between end-user and the server.

Figure 2.3: Request and Response Chain

The URI (Uniform Resource Identifier) strings do HTTP communication, they are

known by many names like www addresses, Universal Document identifiers and

Uniform Resource identifiers. The URI is a formatted string, which is used to find the

resource through name or the location. HTTP is a form used to locate the network

resources.

Ashok Parchuri | MSc Advanced Networking | 2008

17

#Http syntax looks like:
http://host:port[absolute path [? query]]

In the syntax http is the protocol, which is connecting to the host through the port

specified (if the port not specified it uses port 80) and the absolute path is the address

to reach the resource. The query can be any other parameter or process, which

requests the server to perform an operation for requesting details for a particular

entity. A query is called as an argument, crafted to run particular process in the server.

An argument can be passed to server in many formats depend the process required.

An argument is passed by using the special characters like |“(” |, | “)”|,| “:” |, | “\”|,|

“/”|,| “?”|,| “=”| these are some of the common special characters, which are sent to

the server to process a request. HTTP communication uses product tokens to identify

the user version and the server version of the software to make any conversions if

necessary. They also use language tags to identify the language that the end user

working with.

2.3.1 HTTP Message Formats

The HTTP communication is done in Request/Response format. HTTP protocol

contains different headers called as Message-Header, Field-name, Field-Value and

Field-Content. The headers are to ensure proper communication between the end-user

and the server. It also contains the IP address of the server and client to ensure proper

data communication.

Request. A request is generated from client to server, which includes the

request line, general header, request header and entity header. A request line

includes one of the methods that are defined in table 2.1, and the absolute URI

to reach the destination. If the request header filed does not includes the

absolute URI the host is determined by the host-header field. If the request

message does not includes a proper URI string the server responds with a Bad

Request error.

Response. Response is the message that is generated by the server as a reply

to request message from the client. The response includes a status header,

which informs about the status of the request and normal fields like General-

Header, Response-Header and the Message Header. Http message includes

different status codes depending on how the process is executed and whether it

needs any more information from the client. The status codes of the response

messages are defined in table 2.2.

2.3.2 HTTP Methods

HTTP Protocol defines eight methods to identify the process the user needs to

execute. The methods used by the HTTP protocol are defined in table 2.1.

Ashok Parchuri | MSc Advanced Networking | 2008

18

Table 2.1. HTTP Methods

Method Operation Performed by invoking the method

GET Get requests a representation for a specified resource.

POST Post submits data to an identified resource, which needs to be

processed.

HEAD Head is the similar method to get it requests data without the

message. It requests the message like meta-information, which is

included in the response headers.

CONNECT Connect is the method used to convert a connection from one format

to another format. This method is used when converting normal

connection to a SSL (Secure Socket Layer) connection.

OPTION This method is used to validate the server functionality.

DELETE Delete is the method, which is used to delete a specified resource in

the web server.

TRACE Trace id is the method, which echoes the request that a client sends

to the server so that the client can validate whether there is any

interference happens to the message in communication.

PUT Put uploads a specified resource in a particular location.

2.3.3 HTTP Response codes:

When a request is sent to the server, the server posts back a response code depending

on how the process done in the server. To evaluate the HTTP messages, status codes

helps us to identify what type of error the server is generated. This helps to identify

the fake requests/ responses strings that are generated from the client machines. The

status codes in HTTP are defined in three-integer number, as defined in Table 2.2.

Table 2.2: HTTP Error Codes

Code Status

1XX Indicates the server has received the request and it was processing the

request.

2XX Indicates success when the request is successfully received, processed and

the request is accepted.

3XX Indicates a redirection, It tells that further action may be necessary to reach

the resource.

4XX Indicates an error from the client machine, Like bad syntax or when the

request is not properly created.

Ashok Parchuri | MSc Advanced Networking | 2008

19

5XX This indicates an error from server side, in the case when the server does not

fulfil a valid request.

Sample request and response communication:

Figure 2.4: Sample Request and Response Communication

Request from client to www.google.co.uk website

Figure 2.5: Sample HTTP Request Headers.

2.4 Databases
Database is a collection of data or records stored in computer in a structured format.

Databases used nowadays are in relational databases format, where the data in a table

is mutually related to the data in another table. This model is used to reduce the

complexity to gather records from database. Databases contains tables with unique

names with respect to the database, each table contains records of the data.

There are different types of databases are in use. In general all the databases basic

functionality is same (to store the data). But users prefer to use different types of

databases depending on the application compatibility and the speed that the database

can execute the queries.

Most popular database systems are Oracle, MS SQL Server, and MySQL. Although

Ashok Parchuri | MSc Advanced Networking | 2008

20

these three database systems use different formats to store the data and different

protocols to communicate with the application, structured querying language (SQL) is

used to view and modify the records.

The dynamic web applications like Shopping, mail, company intranet applications and

so on uses database as a background application to store the data of the customer,

employees. Databases create a record for user information that is supplied and stores

the data in a structured relational format. This type of storage offers flexibility to the

application to obtain particular record of an user without any complexity.

2.5 Structured Query Language (SQL)
SQL language is ANSI (American National Standards Institute) language that is used

to perform operations against the database. It uses different query formats to Insert,

delete, modify and viewing records from a database. SQL is the universal query

language to perform actions over database systems. SQL language supports all the

major database systems like MS Access, SQL Server, Oracle, DB2 and MYSQL.

Though SQL language is standard there are many different versions in use. All the

versions import the basic key words of SQL like Insert, Delete, and Modify etc.

There are many types of functions used in structured query language to perform

operations against the databases. SQL language can be differentiated as two types,

which are data manipulation language and data definition language. Data

manipulation language contains the commands that are used to perform operations

like selection, insertion, deletion of records in database tables. Data definition

language commands are used to define the structure of the database and how the data

has to be stored in particular database.

2.5.1 Data Manipulation Language

These are the statements used to perform operations against data in database records.

There are four types of commands that are used for data manipulation. The statements

are explained in table 2.3.

Table 2.3. SQL Data Manipulation language Statements (MSDNa, 2008)

Keyword Operation performed by the keyword.

Select This is the command used to Select particular information from the

database. This statement is commonly used to pull the records from

database.

Insert This statement is mainly used to insert records into the table like new

records.

Delete This statement is used to delete records from the database tables.

Update This statement is used to update any existing records in the database with

new values.

Ashok Parchuri | MSc Advanced Networking | 2008

21

2.5.2 Data Definition language

Data definition language statements are used to create new data structures for the

records. These commands are used to perform operations against the structure of the

database. The SQL statements are formed with one or more of the commands that are

defined in Data Manipulation Language. The key commands that are used to do

perform operations against the database structures are listed in table 2.4.

Table 2.4. SQL Data Definition Language Statements (MSDNb, 2008)

Keyword Operation performed by the keyword.

Create Create statement can be used to create any new object in the database

such as a new user, new database and new table.

Alter Alter command is used to alter the properties of the existing user or the

database or the table.

Drop Drop statement is used to completely delete the records from the

databases, this includes deleting the user or database or the tables.

2.5.3 Creating Databases

It is easier to understand the SQL language by observing some sample commands.

This part explains some code snippets which explain how to create databases,

database tables and storing user information in the tables.

Code Snippet

#Creating database called Napier
Create database Napier.
#Creating table Students with some values.
Create table students (mat_number int, stu_name varchar (20)).
(This command is used to create students record in napier database with
mat_number of type integer and stu_name of type character number 20 is specified
that the stu_name record can be up to 20 characters).

Code Snippet

#Inserting a record.
Insert into students (mat_number,stu_name) values(10001,'john');.
(This statement inserts the data into students table with the values provided).

Code Snippet

#Selecting records.
Select * from students;
(A select statement is used to view the record from the database. This can be
passed with different arguments to view limited data also).

#Code Snippet
#Deleting data
Delete from students where mat_number=100001
(This command is executed to delete data from the table students where the
mat_number is equal to 100001)

Ashok Parchuri | MSc Advanced Networking | 2008

22

The code snippets are some of the basic functions that are performed against the

database to maintain records. Structured query language uses special characters to

indicate particular data types like characters and comments in query language. The

attacker tries to use these special formatting characters in SQL language to attack

against the database. A sample database table is represented in Figure 2.6 with some

values.

Figure 2.6. Select statement output.

2.5.4 Operators and characters in SQL

SQL uses different types of operators and characters to get records from the database

effectively. Logical operators are important functions in SQL that are used to obtain

records from the database, when the logical condition evaluated as true. These logical

operators test for a condition whether it is true or not. The operators return a Boolean

value which is “true”, “false” or “unknown”. Some of the logical operators performs

vital role in attackers script. The logical operators are used to pass execute the

statement as true, where the real value of the command is false. The important SQL

operators are listed in Table 2.4.

Special characters are the characters which are used in SQL language to specify that

the user is passing some special data for execution. An SQL server script can take the

values that has to be executed in the database server when it is properly inserted

between single quotes („). The semicolon (;) statement indicates end of an SQL

statement but these types of special characters can be used by the attackers to embed a

new string to inject malicious code.

The (--) double dash indicates a comment statement in SQL language. An attacker can

use this operator to enter into the database maliciously by making the original

command as comment statement. The attackers also uses logical statements like 1=1

and a=a that always evaluates as true. When the code is evaluated against the database

it always results with true value, the database assumes that the attacker has passed

valid credentials and returns the records that the malicious user requested for.

Ashok Parchuri | MSc Advanced Networking | 2008

23

Table 2.5. SQL Logical Operators (MSDNc, 2008)

Logical Operator Action performed by the operator

All This return true if a set of comparisons are true.

And This returns true if both of the expressions are true.

Between This returns true if the value is within the range of

condition specified.

Exists Returns true if the query contains any rows.

Not This operator can reverse of the Boolean operator.

Or Returns true if any of the condition is satisfied.

2.6 Database Administration
Database administration takes very important role to avoid attacks against database

servers. Database administration deals with maintaining integrity and security to the

records. If proper planning is not done when creating the applications it can do severe

damage to the enterprise. For example, when installing a database the database

prompts for administrator login. Most of the users use the default passwords that are

provided by the data base system. Like user “SA” for the MS SQL server. The “SA”

user is created automatically when creating a database and the default login has the

great privileges and this is unalterable, by gaining access to the user “SA” the attacker

is able to perform any kind of operation against the database. So it is advisable that

the administrator doesn‟t use the “SA” login for routine checked in the databases.

When the database is configured with these types of default accounts it makes

attacker work easy to penetrate into database system.

To reduce the risk of SQL injection attacks the administrator can create many

numbers of accounts for each users and the database system allows the administrator

to configure privileges for user depending his role in the organization. It is advisable

to use less privilege user login for normal data applications like database lookup‟s

without updating or need to change the data. These are some of the things that have to

be considered when creating a database application. Database administrators

configure all the settings to the database so by taking preventive measures the

application can be protected from attacks.

2.7 WinPcap
WinPcap is a tool that is used for capturing data packets in windows environments.

This tool is equivalent to the tool “TCPDUMP” that is used in Linux operating

systems. The application allows the packets to transmit and bypass the protocol stack.

This also has additional futures like Kernel-level packet capturing and network statics

engine to support remote packet capturing.

WinPcap is used as the network interface by many tools, which are used for network

packet scanning, network monitoring, traffic generators and network intrusion

Ashok Parchuri | MSc Advanced Networking | 2008

24

detection systems and so on. Snort and Wireshark are some of the popular tools that

use WinPcap as the core tool to monitor the network traffic. WinPcap can be

integrated with many applications like Java, C# to analyze the packets. This is a

popular tool which is used in many open source and commercial network scanning

applications.

The tool is used for capturing raw data that is flowing in the network. It can scan the

data that is coming into the system and the data that is going to other hosts also. It can

gather the stastical information about the network traffic there by making easier to

analyze the data. WinPcap can also filters the data according to the rules that are

created by the user.

WinPcap can scan any type of network devices that is presented in the system.

Though it can get details of all the network adaptors, it is having some problems for

scanning the packets that are flowing through the wireless adaptors. The application

just captures the packets and shows the details but it cannot stop the packets to reach

the application. It can filter the packets that are sniffed. For sniffing the network

packets through winpcap it is essential to set the network device in promiscuous

mode. If the network adaptor is not set to promiscuous mode WinPcap can‟t see the

packets that are designated to particular machine though it can show the packets that

are broadcast and multicast.

This thesis uses SharpPcap which is a tool developed based on WinPcap. SharpPcap

tool provides API for capturing, injecting the packets by .net framework and the

associated programming languages.

2.8 Conclusions
This chapter outlines and describes about the latest technologies that are required to

understand the thesis. It is explained how the actual data communication happens

between the server and an end-user then it discuss about the HTTP protocol. The

theory also presented with several applications and commands that are used with the

SQL language, it also explains about WinPcap tool, which is used for many network

sniffers in the industry.

The application Winpcap is selected to capture the network traffic because this is the

tool that is widely used in the industrial applications to capture the network traffic.

The request and response chain communications are important to understand the data

that has to be captures. It also explains different keywords that are used in HTTP

protocol and SQL server, this chapter provides explanation about the traffic that has to

be captured and the keywords that are to be observed to detect SQL injection attacks.

Ashok Parchuri | MSc Advanced Networking | 2008

25

3 Design

3.1 Introduction
Software programs often need to use different languages in a single program. Such as

a web application that is developed by using C-Sharp program use SQL queries to

perform operations against database. When constructing these queries programmers

often do not consider about the software flaws. This type of programming leads an

attacker to attack on the database server by injecting specially crafted strings. These

types of attacks are called as injection attacks.

Nowadays people depending on web applications are improved to do shopping to

make reservations, to check mails and so on. When user‟s utilizing the web

applications, they believe that the applications are reliable to provide with credit card

information and some sensitive personal information. All the information that is given

by the end user is stored in database in the server.

Due to the low reliability of the web applications they became targets to the attackers

to obtain personal information and the credit card numbers. The attackers try to attack

the database which acts as the storage space for all the user information. One of the

serious threats for the database attacks are SQL injection.

3.2 Outline of SQL injection
SQL injection is a type of attack where the attacker can execute the SQL script in

application layer of the program. This makes the application to think that the code is

executed in normal operation of the application. And it doesn‟t show any errors to the

administrator, as the code is executed as a part of the application. When the attacker is

injecting carefully crafted malicious code at application layer it is impossible for the

administrator to identify the attack as the application performs the operations without

any errors.

In SQL injection attack an attacker executes the SQL script as normal script that is

generated by application to perform an action against the database. An attacker can do

this by doing string manipulation in the application, or by constructing a new

structured string to execute within the application. When the string is executed as a

part of the application the database recognizes a query that is generated by the

application requesting for some information or performing manipulations against the

database. When a attacker gains access to the database by the application it makes the

attackers work easy to execute more number of malicious queries against the

database.

By using this attack an attacker can penetrate through the database and he can also

break the administrator login identities against database. This provides more

privileges to user to do any type of action against the database. At this stage the

attacker can leak any information, the attacker can also drop important information

from the database, the hacker can also corrupt the database. This attack cannot be

recognized by the administrator when it is running as it is identified as normal

application execution, so this attack poses serious threat to web applications.

The SQL injection is very easy to perform by validating the structure of the database.

Ashok Parchuri | MSc Advanced Networking | 2008

26

The attacker just needs a web browser to perform these kind of attacks.Once the

attacker is able to find the way to gain entry into the database he can perform any

action against the database unless the user account created for the application have

less privileges to perform actions over the database.

3.3 Recent Examples of SQL Injection attacks
Mass SQL Injection attacks become a severe threat to many companies where as the

attacker can perform SQL Injection attacks on many websites at a time. According to

SC Magazine (Carr. J, 08 January 2008), an automated SQL Injection attack is

performed on 70,000 websites in 1
st
 week of January 2008.

According to Allen Wilson (Washkuch, 2006), research vice president in secure

works “SQL injection attacks are becoming more popular because they are successful

and easy to orchestrate”. He also claims that there is an increasing demanding for

identity information stored in databases. Hackers perform SQL injection attacks

because they need just a web browser no assemblies required to perform these attacks

E-Crime (e-Crime, 2006) survey claims that the SQL injection attacks often leads to

financial loss to 40% of organizations. The survey also reveals that the companies lost

higher than $700,000 on average. These figures tell us how important is to stop

attacks on the web services.

The SQL injection attacks are not only limited to low profile organization. In June

2007 the software giant Micro soft website is defaced by using SQL injection attacks

the Hacker manipulated the Cascading Style Sheets which are used to styling the

websites, (Zone-H). By capturing an error from debugging the application the attacker

changed the website front page.

According to SECRENO (Scerno, the People VS- e-commerce consumer Attitudes to

data Security) an organization which works for providing security for databases 25

million child benefits records are stolen by a junior officer from HM Revenue and

Customs as he is able to download the details from the database. It also says that the

SQL injection attacks are increasing at around 250% per year.

The examples show the importance to effectively stop the SQL injection attacks. The

attacks not only leads to financial loss to organization they also leads the customers to

lose faith on the organization. According to SECRENO more than 50% of the people

don‟t come back when the website is attacked once. Only 45% of the people think that

the data is protected by the organizations.

3.4 Web Application Processing
Figure 3.1 shows how a web application is processed, when the user requested some

information from the server. A user can reach the server by the URL address. A URL

contains parts for addressing to the server or a database or other application.

Consider a sample string (http://www.abcd.com/show.asp?user=xyz). Consider this is

a string the user xyz is used to request the server to see the page show.asp. The string

is passed through the web browser from the end user computer. Internet works as a

communication channel between the End-user machine and the server.

The communication string is formed with different elements each required to process

Ashok Parchuri | MSc Advanced Networking | 2008

27

at different stages in the server. Considering the same sample string each part can be

explained as, the HTTP is the protocol specification which validates at the firewall.

The firewall detects if there is any other improper protocol is used for communication.

If firewall detects usage of an improper protocol then the firewall stops the

communication. If the request is a known and authentic protocol the firewall simply

allows the string to execute in the server.

A web server is the application execution machine that executes the user‟s request.

Normally every web server works by accepting the HTTP strings and responding in

the form of HTTP strings. A web server can be simply called as host. The host

validates the request and passes the request to application server. Application server is

the component which is used to Process the requested application from the server. In

an HTTP application all the requested web pages are processed by application server.

The application server processes the requested information by the server. The

application server is the program that a programmer creates relationship with the

Databases and all other external applications that are to be processed by the

application. The application servers are written in different languages like asp, java,

.NET, jsp and html. The language used is depends on the user flexibility to

programming and the flexibility for relating with other applications.

The application server then passes the request to the database and the database

responds to the application server with the requested information. The application

server then passes the information to the user over the internet.

During the application execution process the firewall is the only point which is used

to allow or deny the network traffic passing through it. The firewall can normally stop

any traffic depending on the set of rules created by the operating system or by the

firewall application creator. The web server and application server doesn‟t verify any

security threat except the user credentials like the username and passwords.

While the application server is process the attack can only be stopped at the stage of

firewall. But firewall application is not an intelligent application to stop the attacks

that are coming as a request to the server. The request from the end-user is passed to

the server is in the form of normal URL string. As the request is passed to the server

in a form of string the firewall will not able to stop the attack before it reaches the

database for execution.

As the SQL injection attack passes through all the stages as like a normal request

from genuine user the core components of the server may not be able to detect the

attack on the database. So the web server requires a system which can efficiently

observe all the traffic that is coming from the user and to analyzing them for

malicious activity. Figure 3.1 shows the simple communication between an end-user

and the server.

Ashok Parchuri | MSc Advanced Networking | 2008

28

Figure 3.1. Web application processing.

3.5 SQL Injection Types
SQL injection can be classified into four different types according to the type of the

string the attacker is using to attack the database application.

SQL manipulation.

Code Injection.

Function Call Injection.

Buffer overflows.

3.5.1 SQL Manipulation

SQL Manipulation is the basic and common type of attack that an attacker tries to use

against the database. In this type of attack an attacker tries to manipulate the original

code that is passed by the application by adding some extra information to it. In this

type of attack the attacker also uses the key words like “UNION”, “INTERSECT”, or

“MINUS”.

Example:

Consider a login application which uses the database table shown in figure 3.2 (name

auth). When the application is processed for the id_num, the application validates

u_name and pass of the user. Upon passing valid login credentials the database returns

Id_num for the user.

Figure 3.2. Sql Database Table Sample
Code used for validating.
Select Id_num from auth where u_name= ôpeterõ and Pass= ôpeterõ;
(This command returns the id number of peter).

Ashok Parchuri | MSc Advanced Networking | 2008

29

The code which is used for validating the data had a “where” clause and it is

constructed with the “and” operator. So to satisfy the above condition both of the

credentials should be same. If any of the credential is wrong this command results an

error.

The attacker can pass a valid user name and construct another statement to prove both

conditions are true. The code an attacker can be constructed is. By gaining the Id_num

from the database the application thinks that it was used by peter and the attacker is

provided with all the resources that peter can use.

#Injection Code.
Select Id_num from auth where u_name= ôpeterõ and Pass= ôpeterõ or ôaõ= ôaõ;

(This code validates against the database as the u_name is peter and to satisfy
the AND operator the attacker used OR operator and it validates as true. Upon
validating this code the query returns the Id_num to the application.)

3.5.2 Code Injection

Code injection is same as the attack type of SQL Manipulation. But in this type of

attack the attacker adds crafted SQL script to change the properties of user to delete

user account. Considering the database server can execute consequent strings. By

using code injection the attacker who is gained access to “peter” login can delete

another user account.

#Code Snippet
SELECT Id_num FROM auth WHERE u_name= ôpeterõ AND Pass= ôpeterõ OR ôaõ= ôaõ;
DELETE FROM Auth WHERE u_name= ôKevinõ;

This code provides the attacker with access to peter credentials and it also
deletes the user Kevin from database.

3.5.3 Function Call Injection

A database comes with built in functions to perform certain operations over the

database. Or the database server allows a user to create custom functions to perform

many operations against the database tables. The functions are very critical to the

database as they perform actions like connection to networks. The functions which are

used in the databases for proper functioning can be used by an attacker to attack the

database. Custom functions are easy way to gain access by the attacker to inject

malicious code in the database.

The attacker can use the functions to send the database to another location in the

network. The functions are called by the attacker by using normal SQL statements

like SELECT, INSERT, DELETE and MODIFY. The functions that are called by

using select statement doesn‟t do much harm to the database but the functions that are

executed by insert, modify and delete statements can change the data in the database

tables.

A simple example is by using the SQL translate statement that the user input can be

converted into another format, by passing different code in the user input section the

user can change the database structure or the attacker can also add new user to the

database and change the passwords of existing users for gaining access over the

database.

Ashok Parchuri | MSc Advanced Networking | 2008

30

Example:

#Code Snippet.

#Consider òTranslateó function in oracle. This function is used to translate user
input into another format.
SELECT Translate (string1, string_to_replace, Replace String) from table_name;

#The translate statement replaces the characters matching with the
string_to_replace characters in string 1 with the respective characters in
replace string.
TRANSLATE (ô123ierõ, ô123õ, ônapõ); this function returns ònapieró

#The attacker can manipulate this statement to pass some different input to the
database.
Translate (ôô|| myappadmin.adduser (ôadminõ, ôpasswordõ) ||õ õ, ô123õ, ônapõ)

The attacker uses a custom function “myappadmin.adduser” to add new user to the

database. When the new user is added to the database it gives the attacker full control

over the database. An attacker can also use web address to redirect the user to another

server.

3.5.4 Buffer overflow

In the buffer overflow attack the user passes more characters to the database, where

the number of input characters is limited by the databases. This action can overflow

allocated buffer and overwrites adjacent locations in the memory. By crafting the

input carefully the attacker can gain access over the database or this type of attack can

also confuse the database, thus the database can shutdown unexpectedly.

Buffer overflow attacks are normally crafted by making use of security loop holes in

the programming. So by installing updated security patches to the databases the

administrator can stop these types of attacks.

Some of the databases are updated with new technologies can stop any connections

coming from the application when a buffer overflow attack is triggered. By making

use of this the attacker can trigger the buffer overflow attacks many times. This

results the database to stop acting against any commands that are to be executed by

the application. This attack can effect normal operation of the application.

Bind Variables are another concept that a developer can use to save system resources

and to reduce the application execution time. When a command is used against a

database the command is saved in shared pool. When a SQL command is passed to

database by the application, the database checks in the shared pool to verify whether

the command is executed previously or not. If the command is not executed before the

database goes through all the process to execute the command, if the database is able

to find the result in the shared pool it directly uses the result that is stored in shared

pool to response to the database query.

So to save the application resources developer‟s uses bind variables with the SQL

statements. The attackers can try to manipulate the bind variables to execute

applications maliciously. Generally oracle is immune to this type of attacks as oracle

will use the value of bind variables exclusively. And the oracle database works such

as not to reveal any value from the database, when there are no matching values.

Ashok Parchuri | MSc Advanced Networking | 2008

31

3.6 Existing Technologies to stop SQL Injection

3.6.1 Defensive Programming

Defensive Programming is a Programming practice that was done on the integrated

application code when the software is in development stage. The programmer tries to

minimize all the bugs in the programming, and the programmer tries to find out the

way to use the code for hacking purpose. So by this type of coding practice the

programmer will be able to find out the security weakness in the code. By securing

the code the programmer can possibly stop potential attacks on the website.

The code can be analyzed in many ways like reducing the complexity of the program.

Doing reviews on the code again and again to find out the possible vulnerabilities of

the code and to perform software testing on the code. By forming the programming

with the above measures the programmer can develop a code which may be immune.

Ultimately the attacker tries to find out new ways to penetrate into the code. When the

hacker finds a new method that is not tested while application programming the

attacker may be successful at some stage. The user also limited to test the application

with the attacking techniques he knows about.

3.6.2 Anomaly Detection

Anomaly detection technique is a method where the administrator observes the

network traffic. By observing the network traffic the administrator can find when

there is a possible attack performed against the server. The anomaly system verifies

the traffic which is going through the network by analyzing the recorded behavior

with the network traffic there is possibility to find out the attacks.

The anomaly detection is classified in many types like rule-based, model-based and

statistical analysis. The programmer creates a set of rules to define possible types of

attacks that can be performed on the program when the rule is not satisfied there

might be a possible attack on the database. In the model based approach the

application imports the anomaly techniques that are characterized to define attacks on

the server. If the incoming traffic doesn‟t meets the model, the application indicates

there is a possible attack on the database. Statistical analysis is a different approach

where the program calculates the system behavior by measuring certain variables

overtime and it takes average point of the calculated variables. If the new traffic

exceeds the thresholds, indicates there might be a possible attack going on the server.

The anomaly detection techniques are very good in detecting the attacks like Buffer

overflows and different kind of attacks but as the user can be able to pass the data in a

method which represents like normal traffic these techniques are unsuccessful for

detection of SQL Injection attacks.

3.7 Simple SQL Injection Attack by Example
A simple SQL injection attack can be explained as running the SQL code which is not

intended to run by the application. If the application is creating the SQL strings by

using the user input it makes easier for the hacker to attack on the database. The user

just needs a web browser to attack the SQL server.

Ashok Parchuri | MSc Advanced Networking | 2008

32

To demonstrate simple SQL Injection a database table is created with the filed names

as Username (u_name), Password (pass), E-mail ID (email), Identity Number (id).

The fields are filled with some random values. The database table is displayed in

Figure 3.3.

The simple application created takes two variables as Username and Password If the

user passes valid credentials for the two variables then the application is designed to

transfer the user to another page and display the user‟s E-mail ID and Identity

Number. The sample application uses the table that represented in figure 3.3.

Figure 3.3. SQL database Table.

Figure 3.4. Sample Login application

Figure 3.4. Represents a simple web application which running in the local server.

Unlike the traditional password hiding this application is designed to display the

password to demonstrate the SQL Injection attacks.

The database contains Paul as a username and the password for the user is Paul. When

Ashok Parchuri | MSc Advanced Networking | 2008

33

the user Paul tries to login the webpage the application simply redirects user Paul to

another page with the e-mail id as a variable in the html string. The page captures the

email string from the html code then it shows the user e-mail id and identity number.

The output is shown in figure 3.5. this output is generated when user „Paul‟ passed

valid credentials to the application.

Figure 3.5. Sample login application result.

While the application functionality is to validate the user input the hacker can easily

craft new SQL string by taking the user variables as an advantage.

Code Snippet

The SQL query designed to get the user details from the database is designed as:
"SELECT email,id FROM users1 WHERE u_name='" + TextBox1.Text + "' and pass='"
+TextBox2.Text+"'";

on validating the user input from the textboxes the application gets the email id and

identity number (id) from the database. When the valid user details are passed the

application sends the string to the database with valid credentials like.

Code Snippet

SELECT email,id FROM users1 where u_name='paul' and pass='paul';

As the username and password are valid credentials the database executes the

command and returns the requested values. A hacker can easily craft the string which

can always executes as true in the database by using the keywords. If the hacker

injects the code as („ OR „1‟=‟1‟) this allways validates true in the database and the

database sends the responses to the application with the valid information.

Code Snippet
The database string is crafted as:
SELECT email,id FROM users1 where u_name='paul' and pass='' or '1' = '1';

The code snippet shows a string that is injected with the malicious code and it allways

executes as true in the database so the datasbe assumes it is the credentials passed by

valid user and responds with the requested information.

Ashok Parchuri | MSc Advanced Networking | 2008

34

Figure 3.6. SQL injection In Login application.

The hacker pass the credentials that are malicious, represented in Figure 3.6, to

perform the injection operation. The hacker is trying to pass the command that always

validates true in the database. The information database responded with is shown in

Figure 3.7. Where the hacker gains access to the database with invalid credentials.

Figure 3.7. Login application result by injection attack.

Let us consider that the application is designed such as that the application validates

the user password and doesn‟t allows the hackers to penetrate with wrong credentials.

Then the hacker can take advantage of the email variable which is passed to second

page when the user passes valid credentials. It is common that the website host will

have an email id for admin like admin@xyz.com. Or a hacker can browse through the

website and can find a contact email for a representative in the company. This can

also help the hacker to penetrate into the website. The injection attack is represented

in figure 3.8.

Ashok Parchuri | MSc Advanced Networking | 2008

35

Figure 3.8. SQL injection attack Example.

The hacker entered an email id of an employee in the organization and the email id

executes the application. The application considers it as a valid input and displays the

requested information.

A hacker can inject the code in a way that the application couldn‟t understand there

by generating an exception the program this can help the hacker to get some details of

the database table name and the fields in the table which helps the hacker to identify

the design of the table. Hacker can craft the strings carefully to generate an error from

the database. The simple command is represented in figure 3.9.

Figure 3.9. SQL injection Attack example 2.

The figure3.9, input generates an error in the application program and the programs

responds with the error showing the background code that is used as a part of the

application development. This helps the attacker to understand what the language the

application is coded in is and it also helps the attacker to capture the table names and

fields in the table, which can help the attacker to craft the strings accordingly.

Ashok Parchuri | MSc Advanced Networking | 2008

36

Figure 3.10. Error produced by login Application

As the exception handling is not handled properly in the application the application

displays the commands that are used in background of the application. The simple

exception error can give the information like the table name different filed names of

the database table which makes it easier for the hacker to penetrate into the database

easily.

3.8 Conclusion
This chapter explains about the SQL Injection attack in great detail. It is very

important to understand how the attack‟s can take place on a web server and the

methodology‟s the hacker can use to attack the web servers. It also explains the SQL

Injection process on a sample application to give a clear example for how the

Injection attacks takes place. It is also explained about usage of SQL strings in

different ways to attack the databases and it also discusses about the previous

technologies that are used for detecting the Injection attacks.

This part has reviewed how exactly the SQL Injection attacks can happen, and the

sample application gives great benefit for the reader to understand how exactly the

injection attacks done.

Ashok Parchuri | MSc Advanced Networking | 2008

37

4 Implementation

4.1 Introduction
SQL injection can be prevented by taking good care in the application design and

protecting every function and procedures that are used by web applications. The

application designer must take good care about protecting every single SQL statement

that is dynamically generated by web applications. If the statements are not well

protected by the web application designer, a single statement can cause great damage

to the database.

Strings for passing the usernames and passwords to the databases must be created

carefully with bind variables. If the SQL is not crafted carefully using the bind

variables, the value from the user is passed as a form of strings to the database this

makes the attacker‟s work easy to execute malicious SQL over the database. And the

SQL statements should be created such as there is no concatenation in between SQL

strings and parameters.

The Input against the database must be validated properly to stop attacks against the

database. If the input is validated properly it is possible for the administrator to find

malicious code that the attacker is trying to use against the databases. By using the

special characters like single quotes the attacker can successfully enter into the

database. It is recommended that all the special types of characters must be validated

properly before the application passes them into the database.

4.2 Design Considerations
As discussed in previous chapters function is a very important program that is used to

do critical actions over the database. By default the functions in the database are

created as public to allow all the users to use them. As they are public the functions

can also be used by the attacker. The functions can do critical operations such as

changing administration rights to the users and changing user names and passwords

for the databases. So it is recommended that the functions which are not used by the

application are restricted with access limitations.

An end-user can send some commands to the database by inserting malicious code in

the URL strings. So by validating the code that is coming to the server from the end

user the SQL injection attacks can be determined easily.

Most applications prepare SQL statements with the strings which are already

constructed by the programmer. The SQL statement takes the user inputs and it forms

a string with valid data variables from the user. Then the string is executed against the

database by using the application programming techniques. As the application gets the

normal data to it in the form of URL strings the user data passed through it would be

in a form of a string.

The ultimate aim for the attacker is to craft a SQL string which can be an executed

against the database successfully. The attacker tries to use the keywords like „OR‟,

„AND‟ which normally evaluates the executed conditions are true all the times. The

attacker also uses the character Single Quote („) which are used to specify a character

string in SQL data type. By using the Single Quote character successfully the attacker

Ashok Parchuri | MSc Advanced Networking | 2008

38

can close actual data that has to be passed to validate against the database, thereby

creating a query that would execute against database.

SQL Server can execute a batch of queries at a time so if the attacker insert another

query with the query that is used for the database execution. By using this facility the

attacker can modify update or delete records in the database.

4.3 IDS Design
Intrusion Detection Systems (IDS) are the programs which are written to find possible

threats against the application. Intrusion detection systems verify the traffic that is

flowing through the server and it generates an alert when it finds there is possible type

of attack against the server.

The intrusion detection systems designed to protect the application by monitoring the

protocols that are used by the application traffic. An IDS which is developed to

protect certain type of application is called as application protocol intrusion detection

system. This normally sits with in the server and monitors the traffic and

communication against some communication protocols.

The project proposes an application protocol intrusion detection system which is

designed to scan the network traffic for particular keywords that are use to inject

malicious code against the database. the intrusion detection system can be designed in

such a way that it scans the network traffic coming into the server for particular ports

and by scanning all the traffic that is coming from end-users the IDS can be designed

to scan for particular keywords.

Once the IDS detects there is an attack going on the server it alerts the administrator

to take preventive measures against the attack. By observing the request where it is

coming from the administrator can able to block the attacker for some time period.

There by taking care about the attack that is going on the database the administrator

can modify the security settings to the server to stop potential attacks.

The proposed application is designed in such a way that the application scans all the

network traffic that flows through particular ports. Then the application takes all the

URL strings that are transmitted to the application. The URL strings are separated for

each word with some delimiter characters. The application then scans for the

keywords which are normally used to inject malicious code in the URL strings.

After validating for the malicious code the application assigns score of maliciousness

for the URL strings when the URL string score crosses the threshold level of

maliciousness score then the application considers that it is a malicious code that is

injected by the user and it logs the malicious string into a log file. The administrator

can verify the log file of the application of the application to take preventive measures

to protect the database attacks.

4.3.1 Design Pre-requisites

The proposed IDS design is to scan all the network traffic and to evaluate all the URL

strings that are flowing through the network. To scan the packets that are flowing

through the network this project uses WinPCap Tool which is an industry standard

tool to monitor all the network traffic. WinPcap is a standard network tool which is

Ashok Parchuri | MSc Advanced Networking | 2008

39

used in many applications like Wire shark and snort which are designed to monitor

the network traffic.

The proposed project coding is done in C# in Visual studio 2005. C# is an Object

Oriented Language which is developed by Microsoft Corporation in the part of .net

Development. The C# programming uses Microsoft .net Framework library to import

many classes which are already designed to perform particular functions. This project

uses .net Framework version 2.0 to use the classes that are already defined in the

framework.

In some parts the proposed programming also uses SQL Server 2005 for testing

purposes. SQL server is a database server which is used to manage the user database

in the form of tables. The application is designed in such a way that the result is

displayed in console format so that the application can be easily redesigned to

integrate with many other browser applications like Internet Explorer and Mozilla

Firefox.

The application is designed in such a way that the user needs to select the Network

interface to monitor the traffic. The application can also be extended with more sets of

SQL Injection keywords to effectively detect the Injection attack with regards to the

customer own application.

4.3.2 SQL Keywords

The application requires validating the URL strings with different set of keywords

that are used to perform Injection attack. The keywords are part of the SQL language

which is normally used to perform operation on the tables.

The application scans the network traffic and it uses combination of keywords to

effectively detect the SQL Injection attack. When the keyword combination is found

the application assigns a weighted score to the URL string. If the weighted Score is

greater than the threshold level the application automatically logs the packet to the

Log file and alerts the user that there is an SQL Injection attack is going on the server.

The proposed IDS uses set of keywords from the table 4.1. On finding both keywords

from the URL string the ids returns with a weighted score that is assigned to the

keywords.

To assign weighted scores can be valued by considering some scenarios which set of

keywords are most dangerous and which are not. The keywords that are to be

observed by IDS are specified in table 4.1.

Table 4.1. SQL injection attack Keywords.

Keyword Operation Performed on the database

Select Select is the keyword that is used to capture data from the

database tables.

Delete This keyword is used to remove the data from the database

tables.

Ashok Parchuri | MSc Advanced Networking | 2008

40

Insert Insert command is used to Add data to the database tables

when the command is passed to the database with required

values it adds the data to the database. Simply it is the

command used to add new rows to the database.

update Updates the existing data with the new data specified. It is

normally used with the set keyword.

Create Create is the keyword that is used to create new data

elements in the database such as creating the database,

Creating tables in the database.

Drop Drop is the command that used to remove tables from the

database. If the hacker can able to perform administrator

actions on the database he can use this keyword to delete

all the tables form the database.

Alter Alter is the command that used for modifying the database

table by adding more columns. By adding more columns to

the database the hacker can inject malicious data

permanently to the database.

Where This is most commonly used keyword in SQL queries. The

keyword is used to perform validation on particular fields.

Upon validation if the command returns true it performs the

requested operation against the database.

Like Like is the keyword that can be used to perform the

operations when the hacker doesn‟t know the exact data to

be queried with. Like can take arguments like „%‟ to

validate the data approximately.

And And is the keyword that performs Boolean and operation

on the database. If the first condition and the second

condition validate as true then it return requested values

from the database.

Or Or is the keyword that performs Boolean Or operation on

the database. If any of the condition validate as true then it

responds with the requested information from the database.

„=‟ „=‟ is a keyword that normally used by the hackers when

they are performing the operations with or keyword.

Hackers use this keyword to perform the operation is

always valid as true.

From From is a common keyword that is used to specify on

which table the operation has to be performed.

Ashok Parchuri | MSc Advanced Networking | 2008

41

4.4 Programming

4.4.1 Getting Network device List:

The following code explains you how to get the network device list. This uses

SharpPcap tool to capture all the network devices that are present in the system. On

capturing the network devices it is required to change the network device number. On

changing the network device number the program can scan all the packets that are

flowing through that network device.

#Code Snippet
using System;
using System.Collections.Generic;
using System.Text;
using Tamir.IPLib;
using Tamir.IPLib.Packets;
namespace sqlinject1
{
 class Program
 {
 static void Main(string[] args)
 {
 //To get all Networkable devices
 PcapDeviceList getNetConnections = SharpPcap.GetAllDevices();

 // network connection 1 (change as required)
 NetworkDevice netConn = (NetworkDevice)getNetConnections[0];
 PcapDevice device = netConn;

 // Define packet handler
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);

 //Open the device for capturing
 //true -- means promiscuous mode
 //1000 -- means a read wait of 1000ms
 device.PcapOpen(true, 1000);

 Console.WriteLine("Network connection: {0}",
 device.PcapDescription);

 //Start the capturing process
 device.PcapStartCapture();

 Console.Write("Press any <RETURN> to exit");
 Console.Read();

 device.PcapStopCapture();
 device.PcapClose();
 }

4.4.2 On Packet Arrival

When a packet is arrived on the network interface the following code invokes and it

scans for the TCP Packets. The packet‟s source address and the destination address

are captured. If the packets are flowing through Port Number 80 which is used for

HTTP traffic the program invokes method called GetURLString which is used for

capturing the URL string from the packet.

The following code gets the URL string by GetURLString method then it uses some

delimiter characters which are normally used in the URL strings to seperate each

word of the string. Upon seperating each word of the URL string the following code

invokes the method called getscore. The getscore method returns the weighted value

which is then added to the level.

Ashok Parchuri | MSc Advanced Networking | 2008

42

Upon adding the weighted value to the level the value of the level increases. If the

level value reaches more than the threshold levle then the following code alerts the

administrator that there is a possible SQL Injection attack is going on the server, and

it logs the packet into a text file which can be a future reference to the administrator to

prevent attacks.

If the URL string level score dosen‟t reaches to the threshold level then the packet is

simply discarded.

#Code Snippet
public static void device_PcapOnPacketArrival(object sender, Packet packet)
 {
 //Start Scanning if it is a TCP Packet
 if (packet is TCPPacket)
 {
 //capture packet details
 DateTime time = packet.PcapHeader.Date;
 int len = packet.PcapHeader.PacketLength;
 TCPPacket tcp = (TCPPacket)packet;
 string srcIp = tcp.SourceAddress;
 string dstIp = tcp.DestinationAddress;
 int srcPort = tcp.SourcePort;
 int dstPort = tcp.DestinationPort;
 string getstring;

 if (dstPort == 80)
 {
 //If the packet is flowing through port 80 then get the URL
String
 getstring = GetURLString(tcp.Data);
//Seperate each word in the string Whereever it find the following
characters
 char[] delimiterChars = { ' ', ',', '/', ':', '\t' };
 string text= getstring;
 string[] words = text.Split(delimiterChars);
 string[] found = { "select", "delete", "=" };
 //Initialising weighited score
 //If the set of keywords is found increment the score
 int level = 10;
 level += getscore(text, "delete", "from", 30);
 level += getscore(text, "or", "=",40);
 level += getscore(text, "select", "from", 20);
 level += getscore(text, "and", "=", 30);
 level += getscore(text, "drop", "table",40);
 level += getscore(text, "insert", "table", 30);
 level += getscore(text, "union", "select", 30);
 level += getscore(text, "update", "set", 40);
 level += getscore(text, "create", "table",30);
 level += getscore(text, "admin", "drop", 30);
 System.Console.WriteLine(level);
 //threshold level for the weighted score
 //if the weighted score is more than the threshold level display the
message in console window and log the packet
 if (level > 30)
 {
 Console.WriteLine("Sql Injection Attack Detected");
System.Console.WriteLine("Original text: '{0}'", text);
System.IO.StreamWriter sw1 = System.IO.File.AppendText("logfile.txt");
sw1.WriteLine(text +" Detected at: "+ System.DateTime.Now);
 sw1.WriteLine(text);
 sw1.Close();
 }
 else
 {
//If the weighted score is less than the threshold level.
 Console.WriteLine("No SqlInjection detected");

 }
 }
 }
 }

Ashok Parchuri | MSc Advanced Networking | 2008

43

4.4.3 Capture the URL String

The following programming code is used to capture the URL string from the network

device. The URL strings normally have GET method and POST method. GET is used

when the computer is requesting some information from another server. POST is used

when the computer is responding to a remote mechine with requested information.

The user is required to change the Method to GET or POST according to the Program

Usage. If the program is Used for scanning for the outgoing packets than the GET

keyword can be used. If the program is used in the server side then it is required to

change the value to post.

#Code Snippet
//Method to capture URL String from the TCP Packet
 public static string GetURLString(byte[] data)
 {
 string s = System.Text.ASCIIEncoding.ASCII.GetString(data);
 if (s == "") return ("");

 string[] strings = s.Split('\r');

 for (int i = 0; i < strings.Length; i++)
 {
//Get is for all the strings that are requested by the network device.
//Post is to scan all the HTTP traffic that is incoming to network device.
 if (strings[i].StartsWith("GET"))
 {
 string[] final = strings[i].Split(' ');

 return (final[1]);

 }
 }
 return ("");

 }

4.4.4 Comparing The URL string words

The following code is used for comapring the words that are seperated from the URL

string. The Indexof method in C# is used to find the occurance of the keyword in the

string. If the keyword that is specified is found in the URL string then it returns the

score to level whcih is then added to weighted score.

#Code Snippet
//Methods to compare the Seperated HTTP String Words
 public static int getscore(string word, string tofind, int score)
 {
 if (word.IndexOf(tofind) > 0) return (score);
 return (0);
 }

 public static int getscore(string word, string tofind1, string tofind2, int
score)
 {
 if ((word.IndexOf(tofind1) > 0) && word.IndexOf(tofind2) > 0)
 return (score);
 return (0);
 }

 }
}

4.4.5 The application location

It is important to configure the location of application as it determines which part of

Ashok Parchuri | MSc Advanced Networking | 2008

44

the URL string it needs to capture to detect Injection attacks. As discussed in chapter

2 it is known that the packet which is travelling from the internet comes through the

system after scanned by the firewall. The firewall is unable to stop the SQL Injection

attack as the string is passed to the server as a normal request that is generated by the

web browser.

The web server is designed to evaluate whether the request is intended to its own

server or a different one. If the request is designated to the same server then the server

address is validated in the web server process and it then passes the remaining string

to the application server for processing the request.

The application server is designed to connect the database server to perform the

requested operations on the database server. Upon getting the result form the database

server it then responds to the application server with requested information.

The application is designed in a way that it resides between the Web Server and the

application server. When the web server validates the request it then discards the

server name form the string and passes the remaining request to the Application

server. As the application server gets the remaining part of the string which carries the

user data it is important to scan that part of the data.

If the web server address is not addressed properly then the packet is discarded at the

point it enters into web server. So it is determined to be best if the injection detection

application resides between the web server and the application server. Figure 4.1

represents the location of the application in server for successful monitoring of

Injection attacks.

Figure 4.1. SQL Injection application location.

4.5 Conclusions
This chapter proposes an intrusion detection system to identify the SQL injection

attacks. The programming is done by using Microsoft Visual Studio and using C#

programming language. The chapter also explains about the methodology that has to

be used on each part of the TCP/IP packet processing. It starts from evaluating the

packet from the stage of entering into the network till the scanning of the application

for any maliciousness. The programming part is included according to the process it is

written for and the program is explained wherever it is necessary.

Ashok Parchuri | MSc Advanced Networking | 2008

45

5 Evaluation

5.1 Introduction
This chapter discuss about the evaluation of the above discussed program to

effectively scan the network packets for SQL Injection attacks. To evaluate the

application different SQL Injection strings are added to the URL strings file and the

application is processed as a standalone application on the text file to evaluate for

accuracy.

Several tests are conducted on different types of strings and the results are saved into

an excel file to observe the level where the injection attack is detected properly. In the

application evaluation phase the CPU and RAM usage tests also performed to

evaluate the load that is generation on the CPU. The application is designed to run

continuously to monitor the network traffic, so it is very important to consider the

load that is generating on the system performance.

 The application is evaluated with a text file which contains captured URL strings

from the network traffic. The network traffic is captured into a text file and it is

injected with some effected SQL Injection strings. Once the evaluation is carried out

by the application on these strings the results are stores into a excel file with their

values. For successful evaluation the application is actually set the threshold level to

10 so all the strings are reported as defective.

5.2 Application Evaluation:

5.2.1 Example1

For the evaluation test 1 the text file is captured with 789 URL strings and out of that

10 strings are actually infected with Injection attack. These strings are captured in

normal condition where there is no SQL Injection attack is process. The result file

sorted depending on the level of the threat.

When the application is performed on the strings it resulted with 789 strings where as

the application consists 734 strings at level 10, which are non- infected strings. The

remaining 55 strings are reported as defected and their reported level is above 40. The

application also resulted 15 strings with level above 50. The application reported 13

strings above level 70. And it also reported 2 strings with level as 100.

So by considering there are actually 10 strings are affected, the application is resulted

with 55 strings at level 40. By verifying the result file it is found that all the injected

strings are reported with at least a level of 40. In level 50 it detected two strings which

are affected with Injection attack. The level 70 contains 13 URL strings out of which

only 3 are affected. The level 70 showed 10 strings with are not actually infected. The

level 100 shows 2 URL strings which are actually infected with Injection attack. For

ease of analysis a graphical representation of the results are shown below.

Ashok Parchuri | MSc Advanced Networking | 2008

46

0

5

10

15

20

25

30

35

40

R
e
su

lt
 s

tr
in

g
s

40 50 60 70 80 90 100

Threshold Value

Total Resulted

Non Malicious

Malicious

Graph 5.1. Representation of Strings in Evaluation 1.

Analysis values

Figure 5.1. Evaluation1 Analysis values.

False Positives- The false positive condition can be defined as when the application

detects maliciousness when there is no maliciousness found in the actual

result.

The False positive rate for the application can be calculated by using the formula,

(reported non malicious strings/total resulted strings) × 100

Reported non malicious strings=44

Total reported strings=54

According the formula = (44/54) × 100= 81.48%

True Positives- True positive can be defined as the when the application is resulted

with the actual strings that are malicious. The true positives can be calculated

by (Actual malicious strings/Total reported strings) × 100

True positives is = (10/54) × 100= 18.51%

By the experiment above it is found that all the affected strings are shown as infected

on the level above 40. But the level 40 is having more number of strings that are not

actually infected. The level 50 is having 2 infected strings and the level is not having

any strings that are not infected. Level 70 again consists 11 strings out of that 8 are

Ashok Parchuri | MSc Advanced Networking | 2008

47

not infected and 3 strings are actually infected. Level 100 is can be a definite injection

attack because this level can be formed only when matches more number of injection

attack keywords.

5.2.2 Example 2

For evaluation in this example 968 URL strings are captured into a text file and out of

the 968 string 10 strings are injected with affected SQL code. The application is

performed against the URL strings and the results are stored into the excel file.

The application was able to find all the affected strings with a value greater than 40

and the results are varied between value 40 and value 100. The application resulted

with 40 strings which are having value 40 or more than that. One URL string with

value 50, 6 strings with a value of 70. The application also resulted with 3 strings with

a value of 100.

Graphical Representation of Evaluation2:

0

5

10

15

20

25

30

R
e
s
u

lt
 S

tr
in

g
s

40 50 60 70 80 90 100

Threshold Value

Total Results

Non Malicious

Malicious

Graph 5.2. Graphical representation of evaluation 2 Values.

Analysis Values:

Figure 5.2. Evaluation2 Analysis values.

False Positives are = (30/40) × 100=75%.

Ashok Parchuri | MSc Advanced Networking | 2008

48

True Positives are= (10/40) × 100=25%.

As there is no injection attacks found on any of the above examples the level up to 30

is ignored. The injection attacks with a value 40 are normally having 2 keywords. The

value 70 normally represents there are two set of keywords. The injection attack with

a value of 100 means it is having 3 set of keywords.

But when the results are evaluated the strings are normally having only one set of

keywords on each of the detected values. But the application is returning some

strings, which are bigger in length as an injection attack affected strings. Though this

is not a result the application designed to perform the result can be helpful to find the

buffer overflow attacks which are happened through the URL strings.

An administrator can effectively evaluate all the strings that are captured by the

application and he can then separate which are actual injection attack strings. By

taking preventive measures in the programming the administrator can be able to stop

the future SQL Injection attacks.

As the application is resulting strings which are greater in length and actual injection

attacks at the level more than 40. The threshold level of the application can be

considered as 40. If the level is exactly 40 then the string can be considered as a

threat. If the level value is greater than 40 then the string can be considered as actual

SQL Injection threat and the administrator can perform preventive actions based on

the evaluation.

5.3 Alerts
The application is designed to alert the administrator when there is an actual SQL

injection attack is going on the server. The threshold value for the application is

considered as 40. When the URL string crosses the threshold value 40 the application

displays a message box indication that “SQL Injection detected”. This helps the

administrator to take preventive measures when the attack is in progress. The sample

alert screen is shown in figure 5.1.

Figure 5.3. Alert screen

5.4 Conclusions
This chapter discusses about the results that are generated by the application. The

results are evaluated considering the maliciousness in the URL strings. The chapter

aims to find the threshold level value to detect the maliciousness. The analysis is

presented in graphical format.

The results are evaluated at each level and the levels between 10 and 40 the values are

Ashok Parchuri | MSc Advanced Networking | 2008

49

not given any result of maliciousness strings in that level. From the level 40 the output

of the application contains many strings that are not maliciousness. But the

application resulted with the strings that are higher in level. So these strings normally

may contain Buffer Overflow attacks. The application considers the maliciousness

level as 40, and analyzing the actual results is suggested.

The program is designed to alert the administrator when there is an actual SQL

Injection attack is in process with the server. The administrator can verify the log file

when he identifies the attack, then he can take further action to stop the attacker to

penetrate into the database.

Ashok Parchuri | MSc Advanced Networking | 2008

50

6 Conclusion

This thesis aimed at capturing the network TCP/IP packets that are flowing in the

network and scan them to find the maliciousness. These packets are scanned for an

SQL Injection type of maliciousness. This is carried out by implementing a network

packet sniffer and analyzing the packets that are flowing through the network ports.

Scanning for the maliciousness is achieved by splitting-up the URL string into

keywords and comparing the keywords against the set of keywords and characters that

are used in SQL injection attacks.

The SharpPcap application is used to scan the network traffic, and the project is

implemented in Visual C# using the Microsoft .NET Framework. Different tests were

carried out to find the threshold value of maliciousness. This chapter provides a

critical analysis of the whole project and suggestions for future work.

6.1 Critical Analysis
This thesis conducted tests on TCP/IP packets to find maliciousness in the network

traffic. Though this is an effective method to detect SQL injection attacks, the method

takes more response time to perform an operation and it uses more system resources,

which are valuable for server operations.

There are number of aspects that could be implemented in more efficient manner, and

it aims to report the maliciousness over a given threshold level. It is found that the

actual numbers of non-malicious results are higher than the number of malicious

attacks. The threshold level can be adjusted to a particular level to effectively report

the Injection attacks without reporting non-malicious URL strings. The false alerts

were typically caused by long URL strings, and with some strings with an „=‟

character. These caused a relatively high score, which identified maliciousness, where

there was none.

The program can thus find the maliciousness that is injected in HTTP packets and

store them in another log file to analyze the results by an administrator (non real-

time). Though it is clear that the higher the value; the more serious the threat can be.

It is not a definite solution, as a lower value result may also miss possible threats. An

example of this is:

/it/xslt/webtrends/sdctag1.js/ where field = &anything& or &x&=&x&

Which gives a low score (40), but has a serious threat in it. The threshold of 40

obviously needs to be further investigated, but a lower value might not pick up all the

threats, whereas too high a value will have too many false alerts.

The thesis thus aims to help the administrator to verify the type of attack that could

have happened on the database by alert message. But if the administrator does not

take any preventive measures, this could cause a threat on the database. This could be

as severe that an attacker could change the whole database structure before the

administrator finds out that an attack is going on.

6.2 Future Work
This thesis is developed presents ideas for future work related to Injection attacks.

Considering the hackers are trying to find new types of attacks day-by-day it is

Ashok Parchuri | MSc Advanced Networking | 2008

51

important for this application to have future improvements to effectively scan the new

type of attacks. It is well known that the SQL keywords can be used in different

combinations to attack the databases (Steve Friedl., 2007). The developed program

leaves the future scope to add more keywords to the application to effectively scan the

new type of attacks.

The URL strings that are logged into the log file can be evaluated by an administrator

to take preventive measures to stop the Injection attacks. But by blocking the hacker

IP address as soon as the injection attack found in the network this application can

offer more security to stop the SQL injection attacks, this could be an effective to stop

the Injection attacks, but by implementing this in the application the application can

also block legitimate user‟s IP address. It is important to consider that a genuine

user‟s IP address could not be blocked accidently. This could be done on host-based

firewall on the server, or could be by reconfiguration of a network firewall, using

Cisco ACLs.

The application can be implemented in an internet server to evaluate the actual

effectiveness of the application. This evaluation could produce a good analysis on

real-time SQL injection attacks. The threshold value level used to detect an injection

attack can be changed according to the actual traffic that is observed in the internet

server. The application can also be designed as an add-on for browsers, or a windows

application, to continually scan the network usage and applications. This application

can be developed in such a way that it uses fewer system resources to protect the

system from crashes due to low system resources.

6.3 Final Words
This thesis was aimed to scan the network traffic that is infected and to report the

administrator that there is an attack operating against the database. The experiments

are developed in console based application, with an option to increase or decrease the

threshold value, and the actual keywords that has to be scanned.

Although the entire application is made to provide security against the databases, if

the programmer can make an effective application in the development stage, without

security threats and software flaws, the solution could be much easier. The core

problem that can give a chance to hacker to penetrate into the database is badly

designed and implemented software code.

Ashok Parchuri | MSc Advanced Networking | 2008

52

7 References

Anley.C., Advanced SQL Injection.,18 June 2002., NGS Software insight security

research publication. Retrieved on March 13,2008 from,

http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

Asavin., W, Timeline: outbreak!- The risk of SQL Injection,4 august 2008, IT Pro,

retrieved on 24 September 2008 From, http://www.itpro.co.uk/605127/timeline-

outbreak-the-rise-of-the-sql-infection

B.Laing., J. Alderson., Intrusion detection Systems, Internet security systems.

Retrieved on 20 April 2008 from, http://www.snort.org/docs/iss-placement.pdf

Carr, J. 08 January 2008. Retrieved on 03 August 2008 from,

http://www.scmagazineus.com/Mass-SQL-injection-attack-compromises-70000-

websites/article/100497/

Cerrudo. C., Manipulating Microsoft SQL Server using SQL Injection., (White Paper)

Application security, Inc, Retrieved on March 13, 2008 from,

http://www.appsecinc.com/presentations/Manipulating_SQL_Server_Using_SQL_Inj

ection.pdf

Chris., G. Tk Maxx Data Theft: UK shoppers at risk, 30 March 2007,IT Pro, retrieved

on 24 September 2008 from, http://www.itpro.co.uk/109208/tk-maxx-data-theft-uk-

shoppers-at-risk

Colin Angus Mackay., 23 Jan 2005. SQL Injection attacks and some tips on how to

prevent them, retrieved on 05 May 2008 from,

http://www.codeproject.com/KB/database/SqlInjectionAttacks.aspx

Cumming. A., Russell. G. (2006). SQL Hacks. O‟Reilly.

E-Crime, 2006, from, 2006 E-Crime Watch survey By CSO magazine.

www.cert.org/archive/pdf/ecrimesurvey06.pdf

Ellen. M., 01 May 2008, How one site dealt with SQL injection attack. Network

World, Retrieved on 24 September 2008 from,

http://www.networkworld.com/news/2008/050108-autoweb.html

Frank S.Rietta. Application Layer Intrusion detection for SQL Injection, White Paper,

ACM Southeast Regional Conference (March 2006), ACM Retrieved on 13 March

2008.

Information Sciences Institute, Transmission Control Protocol, California, Retrieved

on 03 March 2008 from, http://www.faqs.org/rfcs/rfc793.html

McDonald.S., SQL Injection Modes of attack, defense, and Why it matters. (08 April

2002) Sans Institute, Retrieved on March 13, 2008 from,

 http://www.sans.org/reading_room/whitepapers/securecode/23.php

Ashok Parchuri | MSc Advanced Networking | 2008

53

MSDNa, 2008, Data Manipulation Language (DML) Statements (Transact-SQL),

Retrieved on 14 July 2008 from,

http://msdn2.microsoft.com/en-us/library/ms177591.aspx.

MSDNb, 2008, Full Text Data Definition Language (DDL), Retrieved on 14 July

2008 from, http://msdn2.microsoft.com/en-us/library/ms142489.aspx

MSDNc, 2008, Logical Operators (Transat-SQL), Retrieved on 21 July 2008 from,

http://msdn2.microsoft.com/en-us/library/ms189773.aspx

O. Maor., A. Shulman., SQL Injection Signatures Evasion, 2004, retrieved on 21

august 2008 from,

http://www.imperva.com/resources/adc/sql_injection_signatures_evasion.html

O. Maor., A. Shulman., Blind SQL Injection, Retrieved August 04, 2008 from,

http://www.imperva.com/resources/adc/blind_sql_server_injection.html

Scerno, the People VS- e-commerce consumer Attitudes to data Security, retrieved on

03 August 2008 from,

http://www.secerno.com/download_files/whitepapers/The_People_Vs_Ecommerce-

MORI_poll.pdf

Stephen Kost., An introduction to SQL Injection attacks for Oracle Developers.

January 2004 (White Paper) Integrigy Corporation, Retrieved on March13, 2008

from,

http://www.net-security.org/dl/articles/IntegrigyIntrotoSQLInjectionAttacks.pdf

Steve Friedl., 2007, SQL Injection Attacks by Example, Retrieved on 05 May 2008

from,

http://www.unixwiz.net/techtips/sql-injection.html.

Sikha. S. Bagui, Richard.W.Erap, Learning SQL on SQL server 2005,(2006).O‟Reilly

Tamir gal., SharpPcap. A packet capture framework for .net (27 November 2005),

Retrived on July 27, 2008 from, http://www.codeproject.com/KB/IP/sharppcap.aspx

Washkuch. F, 2006. Retrieved on 03 August 2008 from,

http://www.scmagazineus.com/SQL-injection-attacks-on-the-rise-says-

SecureWorks/article/33692/

William G.J. Halfond., A.Orso. Preventing SQL Injection attacks with AMNESIA

,20th IEEE/ACM international Conference on Automated software engineering,

ACM, Retrieved on March 13,2008 from,

http://www.cc.gatech.edu/~orso/papers/halfond.orso.ICSEDEMO06.pdf

Zone-H Microsoft Defaced, Again Retrieved on 03 August 2008 from,

http://www.zone-h.org/content/view/14780/ 31/

Ashok Parchuri | MSc Advanced Networking | 2008

54

8 Appendix

8.1 Program for Capturing SQL Injection attacks
This shows code snippets of the overall code used.

#Code Snippet
using System;
using System.Collections.Generic;
using System.Text;
using System.Globalization;
using System.Threading;
using Tamir.IPLib;
using Tamir.IPLib.Packets;
namespace sqlinject1
{
 class Program
 {
 static void Main(string[] args)
 {
 //To get all Networkable devices
 PcapDeviceList getNetConnections = SharpPcap.GetAllDevices();

 // network connection 1 (change as required)
 NetworkDevice netConn = (NetworkDevice)getNetConnections[0];
 PcapDevice device = netConn;

 // Define packet handler
 device.PcapOnPacketArrival +=
 new SharpPcap.PacketArrivalEvent(device_PcapOnPacketArrival);

 //Open the device for capturing
 //true -- means promiscuous mode
 //1000 -- means a read wait of 1000ms
 device.PcapOpen(true, 1000);
 Console.WriteLine("Network connection: {0}", device.PcapDescription);

 //Start the capturing process
 device.PcapStartCapture();
 Console.Write("Press any <RETURN> to exit");
 Console.Read();
 device.PcapStopCapture();
 device.PcapClose();
 }
 public static void device_PcapOnPacketArrival(object sender, Packet
packet)
 {
 //Start Scanning if it is a TCP Packet
 if (packet is TCPPacket)
 {
 //capture packet details
 DateTime time = packet.PcapHeader.Date;
 int len = packet.PcapHeader.PacketLength;
 TCPPacket tcp = (TCPPacket)packet;
 string srcIp = tcp.SourceAddress;
 string dstIp = tcp.DestinationAddress;
 int srcPort = tcp.SourcePort;
 int dstPort = tcp.DestinationPort;
 string getstring;

 if (dstPort == 80)
 {
 //If the packet is flowing through port 80 then get the URL String
 getstring = GetURLString(tcp.Data);
 string getstring1 = getstring.ToLower();
 string getstring2 = getstring1.Replace("'", "&");
 char[] delimiterChars = { ' ', ',', '&', '/', ':', '\t' };
 string text = getstring2;
 string[] words = text.Split(delimiterChars);
 //Seperate each word in the string Whereever it find the following characters
 int level = 10;

Ashok Parchuri | MSc Advanced Networking | 2008

55

 level += getscore(text, "delete", "from", 30);
 level += getscore(text, "or", "=",40);
 level += getscore(text, "select", "from", 20);
 level += getscore(text, "and", "=", 30);
 level += getscore(text, "drop", "table",40);
 level += getscore(text, "insert", "table", 30);
 level += getscore(text, "union", "select", 30);
 level += getscore(text, "update", "set", 40);
 level += getscore(text, "create", "table",30);
 level += getscore(text, "admin", "drop", 30);
 System.Console.WriteLine(level);
//threshold level for the weighted score
//if the weighted score is more than the threshold level display the message in
console window and log the packet
 if (level > 40)
 {
 Console.WriteLine("Sql Injection Attack Detected");
 System.Console.WriteLine("Original text: '{0}'", text);
 System.IO.StreamWriter sw1 =
System.IO.File.AppendText("logfile1.txt");
 sw1.WriteLine(text +" Detected at: "+ System.DateTime.Now);
 sw1.WriteLine(text);
 System.Windows.Forms.MessageBox.Show("Sql Injection Attack
Detected");
 sw1.Close();
 }
 else
 {
 //If the weighted score is less than the threshold level.
 Console.WriteLine("No SqlInjection detected");

 }
 }
 }
 }

//Method to capture URL String from the TCP Packet
 public static string GetURLString(byte[] data)
 {
 string s = System.Text.ASCIIEncoding.ASCII.GetString(data);
 if (s == "") return ("");

 string[] strings = s.Split('\r');

 for (int i = 0; i < strings.Length; i++)
 {

//Get is for all the strings that are requested by the network device.
 //Post is to scan all the HTTP traffic that is incoming to network device.
 if (strings[i].StartsWith("GET"))
 {
 string[] final = strings[i].Split(' ');

 return (final[1]);

 }
 }
 return ("");

 }

//Methods to compare the Seperated HTTP String Words
 public static int getscore(string word, string tofind, int score)
 {
 if (word.IndexOf(tofind) > 0) return (score);
 return (0);
 }
 public static int getscore(string word, string tofind1, string tofind2, int
score)
 {
 if ((word.IndexOf(tofind1) > 0) && word.IndexOf(tofind2) > 0) return
(score);
 return (0);

Ashok Parchuri | MSc Advanced Networking | 2008

56

 }

 }
}

8.2 Output Screens

Figure 8.1. Output when No Injection attack is detected.

Figure 8.2 Output of application when attack detected.

Ashok Parchuri | MSc Advanced Networking | 2008

57

Figure 8.3. Sample Log file Output.

